
Migration Guide
ASP.NET Web Forms to Modern ASP.NET

C
o
p
yr

ig
h
t
©

 R
e
so

lu
te

 S
o
ft
w
a
re

Introduction

If you’ve been paying attention to the .NET world of late, it would be hard not to

notice that ASP.NET Web Forms development isn’t as popular as it once was.
There are several reasons for this, but the truth is that the technology is dated

and doesn’t offer many advantages over newer frameworks.

And, if you’re like most developers and IT leaders, the idea of modernizing legacy

ASP.NET Web Forms is a little intimidating, and it can be tough on your bottom line

if things go wrong. But the reality is that not modernizing an existing application

has some (not-so-obvious) drawbacks when it comes to competing in today’s

cloud-connected world. So how do you know when it’s time to modernize your
software?

Over the past two years, we’ve been fortunate to be involved with many ASP.NET

modernization projects and have been able to learn a few things along the way.
We’ve taken our knowledge and have compiled a short white paper on some

technical areas for you to consider in your preparation for modernizing your
software. Armed with the correct information and guidance, we hope that this

whitepaper moves you to take the first steps in modernizing your software.

Well-versed in web development, C#, .NET, JavaScript and Agile project
management, Veli has played an active role in the creation of the Telerik

ASP.NET AJAX suite. Later, he takes on the position of VP of Engineering at
Progress, leading a team of 100 talented software engineers. He has a lot to

share about tackling IT challenges, building engineering teams and starting a

software consultancy company spanning two continents.

AUTHOR

Veli Pehlivanov, CTO at Resolute Software

C
o
p
yr

ig
h
t
©

 R
e
so

lu
te

 S
o
ft
w
a
re

ASP.NET: A Look Back in Time

Risk-based Approach to Software Modernization

Technical Considerations for ASP.NET Web Forms

Modernization

Final Words

Considerations for the Data Access Layer

Considerations for the Business Logic Layer

Considerations for the User Interface Layer

Considerations for Single-page Application (SPA)
Frameworks

Considerations for Server Applications

Testing, Deployment, and Operational Considerations

1

4

6

8

9

12

16

20

22

25

Table of Contents

C
o
p
yr

ig
h
t
©

 R
e
so

lu
te

 S
o
ft
w
a
re

ASP.NET: A Look Back in Time

Microsoft released ASP.NET Web Forms way back in the Dark Ages,
2002. It was the dawn of web technologies, and Web Forms

provided a cutting-edge framework for building web applications

using patterns and paradigms from the desktop application

development world, appealing to the larger community of desktop

developers at the time. In 2007, with ASP.NET 2.0, Microsoft
introduced the Asynchronous JavaScript and XML concept, more

commonly known as AJAX. It enabled developers to create more

interactive web applications that loaded content behind the scenes

and reduced the typical “page flicker” effect of reloading browser
pages.

1

C
o
p
yr

ig
h
t
©

 R
e
so

lu
te

 S
o
ft
w
a
re

A couple of years later, in 2009, ASP.NET took on a whole new web application

development paradigm – the Model-View-Controller (MVC). Web technologies

were moving ahead fast, and ASP.NET MVC was a cutting-edge programming

model true to how the web works. Moreover, segregating the responsibilities of
the different application layers provided the “right” way for building modern web

applications, with framework constructs and abstractions that align more closely

to the HTTP protocol and the way web servers work.

From 2009 to 2016, Microsoft had two equally important web application

development frameworks that were both getting active support and were

included in modern versions of .NET. Web Forms was front-and-center to all
existing web applications written in .NET. At the same time, for green-field

projects, developers could choose between Web Forms and MVC depending on

project requirements and available developer skillsets. However, everything

started to shift in late 2016, when Microsoft announced the future of .NET – a

universal, cross-platform, open-source version of the framework – .NET – and

there was room for only one flavor of ASP.NET in it. The modern ASP.NET web

framework carries forward the strength of the MVC pattern but leaves Web Forms

behind, making it a legacy technology.

ASP.NET: A Look Back in Time

2

1996

ASP

ASP.NET

1.0

ASP.NET

2.0
ASP.NET

MVC 3.0

ASP.NET

MVC 2.0

ASP.NET

MVC 1.0

ASP.NET

MVC 4.0

ASP.NET

MVC 5.0

ASP.NET

AJAX
ASP.NET

CORE 1.0

2002 2005 2007 2009 2010 2011 2012 2013 2016

ASP.NET Release Timeline

C
o
p
yr

ig
h
t
©

 R
e
so

lu
te

 S
o
ft
w
a
re

For you, it is important to know that Microsoft will not be “killing”
ASP.NET Web Forms. Because Web Forms applications run on the

classic .NET Framework, which is tied to the server’s operating

system, you can continue running these apps for years to come.
But, what this means is that your Web Forms applications will
continue to work only as long as you have people to support them.
Microsoft’s newer development platforms (starting with .NET 5, their
latest release framework at the time of writing) are in active

development and support, which means they have a release

cadence and thus are introducing new features, improvements,
and security updates.

Added to this, developers are typically interested in the latest, most
exciting technologies. Microsoft is closely following the trends by

launching modern web application paradigms such as MVC, Razor,
Blazor, REST, and real-time APIs, which developers will likely favor
more than legacy technologies like Web Forms.

ASP.NET: A Look Back in Time

In the modern app-driven business economy, the availability of
engineering talent is a crucial prerequisite for successful
software projects. A lack of interested developers makes Web

Forms increasingly hard to justify as a framework of choice for
large-scale, long-term software development with a critical
impact on the business.

3

C
o
p
yr

ig
h
t
©

 R
e
so

lu
te

 S
o
ft
w
a
re

Risk-based Approach to Software

Modernization

The idea of rewriting an entire, often complex software system is

understandingly overwhelming. The time and engineering

investment in any system rewrite is a massive consideration for
technical and business leaders looking to maximize the positive

outcome for the organization. For any large-scale organizational
effort, we recommend taking a risk-based approach to your
modernization. This approach requires that stakeholders identify

the key risks for a software system that, if realized, could lead to a

negative business outcome.

4

C
o
p
yr

ig
h
t
©

 R
e
so

lu
te

 S
o
ft
w
a
re

Risks identified in any of these areas could steer the software

modernization strategy in different directions. For example, a lack of
engineering talent in Web Forms could adversely affect the long-
term maintainability of your Web Forms application. Ever-
increasing user expectations for snappy graphical interfaces that
load instantly and work anywhere could shift your decision towards

modern web applications written in JavaScript and running on REST

APIs.

When creating mitigation strategies, understanding your potential
software risks can make the difference between a successful
software project that can boost the business and a software project
that turns into a time and money pit with no clear sign of a positive

outcome.

Risk-based Approach to Software Modernization

Technology life cycle

Project duration

Impact on business

Skillset

Engineering capacity

Technology life cycle, project duration, impact on the business,
technical skillset, and engineering capacity are some of the

primary risk assessment areas we consider.

5

C
o
p
yr

ig
h
t
©

 R
e
so

lu
te

 S
o
ft
w
a
re

Technical Considerations for

ASP.NET Web Forms

Modernization

You should start any Web Forms application modernization with a

set of key technical considerations. First, the basic assumption is

that the outcome of this modernization effort is a new and modern

web application that meets business objectives, provides a

delightful user experience, and conforms to industry best practices

for system design, efficiency, and maintainability.

6

C
o
p
yr

ig
h
t
©

 R
e
so

lu
te

 S
o
ft
w
a
re

Meeting the list of architectural requirements above can be a daunting task,
especially when the modern system must preserve all the capabilities of the

legacy system and minimize the negative impact of transitioning from the

old to the new.

Technical Considerations for ASP.NET Web Forms Modernization

UI Components

Data Access Components

Presentation Layer

Se
cu

ri
ty

O
p
e
ra

ti
o
n
a
l M

a
n
a
g
e
m

e
n
t

C
o
m

m
u
n
ic
a
ti
o
n

Business Layer

Data Access Layer

Database Layer

UI Process Components

Service Gateways

Business Workflow

Database SQL Queries Stored Procedures

Exception Handling Records Handling Utilities

N-Tier Architecture

Preserves and extends the capabilities of the original system

Follows SOLID principles for code organization

Segregates the application into multiple layers – Data Access, Business

Logic, and Presentation

Has well-defined and documented communication interfaces between

layers

Creates efficient data pipelines that minimize waste in storage, processing,
and network bandwidth

Provides snappy, intuitive, adaptive user interfaces that work on a multitude

of browsers, devices, and screen sizes

7

To conform to these technical requirements, software architects

map existing system capabilities onto a modern N-tier
architecture that:

C
o
p
yr

ig
h
t
©

 R
e
so

lu
te

 S
o
ft
w
a
re

https://en.wikipedia.org/wiki/SOLID

Our architects have taken these and many additional
considerations and standardized them into a Modernization

Assessment for our past projects – an intense, time-boxed

requirements discovery and system architecture evaluation

engagement. We take a deep dive into the legacy system,
document the technical and business findings, and present a

recommended system architecture, technology stack, and

development approach. We thus help draft the big picture of a

software modernization project and create a long-term roadmap

to carry the development team successfully through the project.

Technical Considerations for ASP.NET Web Forms Modernization

Considerations for the Data Access Layer

Data is the core asset in almost any business application. Our
primary objective, as developers, is to create efficient ways to work

with data – whether creating, storing, or consuming it. From a

technical perspective, the data layer often constitutes the fixed,
unchangeable, stable foundation on top of which legacy is

maintained while the modern system evolves simultaneously.

The modern system’s tech stack choices may create special
considerations for the data layer, where the new system must run

on the same database and schema version. For example, suppose

your legacy Web Forms application uses Entity Framework or
another enterprise quality ORM framework. In that case, it might be

easier to preserve the data layer by replacing the ORM with a

version compatible with the latest .NET framework like Entity

Framework Core.

8

C
o
p
yr

ig
h
t
©

 R
e
so

lu
te

 S
o
ft
w
a
re

https://www.resolutesoftware.com/services/modernization-assessment/

If you’re going down that path, read our post on Eager Loading in

Entity Framework Core for some tips and tricks around Entity

Framework migration.

From a modernization standpoint, the business logic layer is

probably the most complicated area of your system. If your legacy

Web Forms app follows the N-tier paradigm, you’ve done yourself a

great favor, as your new ASP.NET application will likely get a lot of
your original code organization.

Technical Considerations for ASP.NET Web Forms Modernization

Considerations for the Business Logic Layer

9

ADO.NET Provider

Application

Entity Framework
Entry Data Model (EDM)

Describes object-relational mapping

ORM Interface

Queries/Updates

Data
Store

Creating data access layer using

Entity Framework

C
o
p
yr

ig
h
t
©

 R
e
so

lu
te

 S
o
ft
w
a
re

https://www.resolutesoftware.com/blog/why-work-with-eager-loading-in-entity-framework-core-6/

On the other hand, if you’re starting with N-tier architectures now,
your business layer (also called Application Core) should generally

be divided into multiple sub-areas:

Technical Considerations for ASP.NET Web Forms Modernization

B
u
si
n
e
ss

La

ye
r

D
a
ta

La

ye
r

Pr
e
se

n
ta

ti
o
n

La

ye
r

Business
Workflows

Business
Components

UI Components
Service

Interface
UI Process Components

Application Facade

Bu
si

ne
ss

En

tit
ie

s

Data Access Logic
Components

Data Helpers/
Utilities

Service
Agents

Users Clients
C

ro
ss

-C
ut

tin
g

Data
Sources

Services

Se
cu

rit
y

O
pe

ra
tio

na
l M

an
ag

em
en

t

C
om

m
un

ic
at

io
n

Entities – plain model classes and data containers

representing your domain entities

Business services – your domain-specific business logic

classes

Interfaces – the public API facade of your application core,
facilitating decoupled system components through

dependency injection

Other system objects – domain events, exception classes,
aggregates, value objects – all players in your domain model
and required artifacts in an enterprise service architecture

10

C
o
p
yr

ig
h
t
©

 R
e
so

lu
te

 S
o
ft
w
a
re

Technical Considerations for ASP.NET Web Forms Modernization

Migrating your business logic from .NET Framework to modern .NET

is a well-documented exercise, but one that requires critical
thinking. First, the business logic layer should be migrated to .NET

Standard, which would produce interoperable compiled assemblies

that can be safely referenced in multi-platform systems. When

mapping between legacy and modern .NET versions, this table can

help you choose the correct .NET Standard to target. Start migrating

from the bottom of your dependency tree (usually a project named

Entities, Model, or BLL) and work your way up through the

dependency graph. Migrating projects between .NET Framework

and .NET Standard is sometimes super easy and other times hard,
depending on the framework APIs and NuGet packages you’re

using.

Most NuGet packages are either .NET Standard assemblies already

or have .NET Standard counterparts. If you find yourself unable to

use a .NET Standard version of a package, you can still build

your .NET Standard project against a .NET framework dependency.
You should expect compiler warnings, and not everything may work

properly at runtime.

Typically, our advice in these situations is to either try to replace

the package with a .NET Standard equivalent or similar or, if this

is not possible, create unit tests for sufficient test coverage.

Testing potentially incompatible dependencies is usually

problematic since developers have to cover all business logic

cases calling an API in a dependent package to catch incompatible

APIs.

11

https://learn.microsoft.com/en-us/dotnet/standard/net-standard?tabs=net-standard-1-0

Technical Considerations for ASP.NET Web Forms Modernization

The user interface of your application has a significant impact on

the overall usability of the system. It is the biggest deciding factor
between users sticking with your application versus leaving. In the

extreme worst case, a poor user experience drives users to

abandon your product or business altogether. Therefore, software

modernization projects are often the time to improve the user
interface, make it more intuitive, performant and thus increase user
engagement and retention.

Considerations for the User Interface Layer

Our experience shows that most modernization projects turn into

major UI overhaul initiatives, introducing modern user interaction

paradigms like touch and voice, multi-device and on-the-go

access through a responsive user interface, and better security and

encryption. Picking the right choice of technology, tools, and

patterns for your user interface is key to achieving success in a

world of ever-increasing user expectations for fast, engaging, and

intuitive applications. Developers call these “consumer-grade

applications” – a term denoting the trend that massively popular
consumer apps like Facebook, Twitter, and Google apps have

created – shaping user expectations for all app experiences,
including business apps. The modern business application faces

the exact same user expectations for high-quality, interactive,
easy-to-use visual interfaces.

12

C
o
p
yr

ig
h
t
©

 R
e
so

lu
te

 S
o
ft
w
a
re

Technical Considerations for ASP.NET Web Forms Modernization

ASP.NET Web Forms is a “server pages” paradigm at its core – it
presents fully rendered HTML pages from the web server. When the

page loads, users can interact with it – click on buttons, expand

sections, navigate further into detail pages. Such changes in the

visual state require a roundtrip to the server, where the server
generates an updated page.

This interaction pattern is, by design, bound to suffer from the

network overhead of making requests between the browser and the

server. Not only is the user waiting, but they will see the flickering

between the old pages being dismissed and the new pages being

rendered, creating a jarring user experience.

Advancements in browser technology and the introduction of AJAX

back in 2007 helped improve the situation by reducing the page

flicker, and the amount of data passing between the browser and

the server but could not alleviate the server roundtrip overhead

altogether. And while many capable web developers have used the

power of JavaScript to create dynamic and interactive user
interfaces on any web framework, the original Web Forms

technology alone is highly insufficient to meet the requirements of
the rich, modern browser applications.

Why ASP.NET Web Forms Is Not Suited for
Consumer-grade Applications

13

C
o
p
yr

ig
h
t
©

 R
e
so

lu
te

 S
o
ft
w
a
re

Technical Considerations for ASP.NET Web Forms Modernization

Web technologies have evolved significantly since the days of Web

Forms. Today, snappy, responsive user interfaces are created using

modern JavaScript frameworks. The Single-Page Application (SPA)
paradigm shifted the responsibility for building and updating the

web page to the browser with the help of JavaScript APIs and

browser capabilities. Frameworks like Angular and React help

create a clean and maintainable layered architecture for the

application front-end and help scale the server by offloading more

and more of the data processing to the browser.

SQL

HTML + JavaSript

Server Client

Database

Server

Request

Response

New Alternatives Are Gaining Popularity

14

Web Page Round-Trip

C
o
p
yr

ig
h
t
©

 R
e
so

lu
te

 S
o
ft
w
a
re

Technical Considerations for ASP.NET Web Forms Modernization

A recent and well-hyped alternative by Microsoft – Blazor –

promises to combine the best of modern JavaScript MVC patterns

with the ability to write C# running in the browser for maximum .NET

skill reuse. Through a capability in modern browsers to run

compiled code, Blazor bootstraps a slimmed-down version of
the .NET runtime in the browser process and allows .NET developers

to build web interfaces and share code in .NET Standard assemblies

– all in their favorite programming language.

Of course, not all business applications require robust and dynamic

client-side user interfaces that change state rapidly in a highly

interactive manner. For Server pages, their equivalent in the

modern .NET framework is Razor pages, which provide a simple,
elegant, and intuitive programming model for developers who need

to write page-focused app scenarios.

ASP.NET Core

WebAssembly

.NET

Razor Components
DOM

https://…https://…

VS
Blazor

Server-side Client-side

15

DOM

.NET

Razor Components

C
o
p
yr

ig
h
t
©

 R
e
so

lu
te

 S
o
ft
w
a
re

https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor
https://learn.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-5.0&tabs=visual-studio

Technical Considerations for ASP.NET Web Forms Modernization

Having options is a great thing, but making the right decision

requires a careful assessment of the core system requirements

and dealing with the impact of that choice. The decisions we

make in this area affect the rest of the application layers. The

frameworks mentioned above have their strengths and

weaknesses, learning curves, ecosystem strength, and varying

degrees of complexity (framework complexity and system

complexity).

Considerations for Single-Page Application (SPA)

Frameworks

Going with a modern SPA framework like Angular or React requires

significant development effort in JavaScript. The client application

codebase is typically separate from the rest of the .NET solution and

is developed, tested, and deployed as a standalone system

component. This separation increases the deployment complexity

in a typical .NET and Visual Studio-based deployment scenario for
ASP.NET applications.

16

C
o
p
yr

ig
h
t
©

 R
e
so

lu
te

 S
o
ft
w
a
re

Technical Considerations for ASP.NET Web Forms Modernization

JavaScript is a popular language, and the JavaScript ecosystem is

abundant with choice – tools, libraries, components… Anything a

developer could want can probably be found in the JavaScript
world. The most popular JavaScript web frameworks today –

Angular, React, and Vue – all come with their own very active

communities, rich tools, and third-party components. From a

functional perspective, they typically vary on a scale between “just
an MVC library” to an “all-in-one framework for web applications.”
The position of a particular framework on that scale describes the

degree of “completeness” of the core library or framework.

Angular, for example, is an all-in-one framework that comes

bundled with a component model, routing, forms, and localization

in addition to the core MVC framework. On the other hand, React is

considered more an MVC library that deals mainly with presenting

the UI and tracking changes on the page, where additional
application components must be brought in as external
dependencies and third-party components from the ecosystem.
The level of support components get from the engineering team

behind the framework should also impact your choice.

Both Angular and React are considered mature and well-
supported, but picking the proper framework for your project
still requires additional research on framework capabilities, the

richness of third-party components, and their long-term

roadmap.

Picking The Right Framework for Your Project

17

C
o
p
yr

ig
h
t
©

 R
e
so

lu
te

 S
o
ft
w
a
re

Technical Considerations for ASP.NET Web Forms Modernization

Blazor is an exciting case since its fundamental promise is that developers can

use C# to create web applications typically coded in JavaScript. Our take on

Blazor is that it certainly has its place in the list of viable choices for modern web

applications running on .NET, particularly where developers need to share and

run the same code on both the client and the server. However, we don’t consider
the notion of “C# instead of JavaScript” true. Instead, we can generalize our
thoughts as “C# and JavaScript together in the browser,” as Blazor alone cannot
replace all cases where JavaScript is required, particularly when applications

need modern browser capabilities such as local storage, IndexedDB, web workers

and encryption.

Company

Released Year

Code

Portability

DOM

Performance

Github Stars

Price

Learning Curve

Data Binding

UI Rendering

Google Facebook

2010(Angular JS),
2016(Angular 2+)

2013

JavaScript, TypeScript JavaScript, HTLM, JSX

Real Virtual

High High

41.871 113.719

Open-source Open-source

Steep

Two-way

Client/Server Side

Relatively Small

Moderate

One-way

Client/Server Side

Relatively Small

ReactNative for mobile
version (Android, iOS)

NativeScript
(Web, iOS, Android)

Angular React

VS

Possible Complexities with Blazor

18

App size

C
o
p
yr

ig
h
t
©

 R
e
so

lu
te

 S
o
ft
w
a
re

Technical Considerations for ASP.NET Web Forms Modernization

If leaning towards a SPA framework, one aspect to consider is that
SPAs require a robust server API (typically a RESTful JSON API) that
provides CRUD and other business layer capabilities. When a Web

Forms application is the subject of modernization, a REST API may

be a new system requirement since the typical Web Forms

application has its client and server code tightly coupled through

page code-behind files (.aspx.cs files) instead of a decoupled,
generic public API. When migrating to a modern .NET application,
the need to access data and business logic on the server through a

standalone API interface has a significant implication on your
overall system design. It creates a shift from a page-focused to an

endpoint-focused design. Since modern APIs are modeled around

the notion of a resource (an entity or an aggregate) in your domain

model that exposes data and operations through a uniform

interface, this often constitutes a change of abstraction compared

to Web Forms, where you expose functionality local to a specific

server page, aggregating multiple entities and actions. This shift
from a function-based to a resource-based system design affects

the data pathways (how data is exchanged) and the “chattiness”
(how frequently is data exchanged) between the client-side and

the server-side of your application.

REST API Requirements

We still observe the need to write significant amounts of JavaScript
in Blazor applications, and Blazor apps still require the same level of
JavaScript code organization and discipline as pure JavaScript SPA

frameworks.

19

C
o
p
yr

ig
h
t
©

 R
e
so

lu
te

 S
o
ft
w
a
re

https://restfulapi.net

Technical Considerations for ASP.NET Web Forms Modernization

The modern .NET application architecture promotes well-defined segregation

between the client layer (a JavaScript SPA, a Blazor application, or a set of Razor
server pages) and the server layer – a collection of data entities and business

functions grouped logically in functional modules and exposed through an API
interface. Note that in server pages with Razor, the Razor markup files and the

underlying controller classes are still considered part of the client-side, even

though they run on the server. The client-server segregation principle mandates

that the client communicates with the server through a well-defined API surface

that exposes data and business functions through a uniform interface. When the

client is a standalone browser app (e.g., a JavaScript SPA or a Blazor app), this

interface is typically a REST-ful JSON API provided over the HTTPS protocol.
Server-side API controllers then tap into the pool of business functions and data

access classes (the so-called Business Logic Layer – BLL – in an N-tier
architecture) and provide useful business functionality to the client.

Product Service

Customer Service

Inventory Service

Order Service

API GatewayClient

Rest / HTTP

Rest / HTTP

1. Caching
2. Load Balancing
3. SSL to the outside world

(Intranet) API gateway and other services are in the same networkInternet

gRPC

Rest / HTTP

20

Considerations for Server Applications

C
o
p
yr

ig
h
t
©

 R
e
so

lu
te

 S
o
ft
w
a
re

Technical Considerations for ASP.NET Web Forms Modernization

When your client is a set of Razor pages, the client-server API
interface may not be as well-defined as a separate JSON API. Razor
provides a mix of server functions (Razor controller methods

executed on HTTP GET and POST requests) executed before the

page is rendered to the browser and can call controller actions

asynchronously through JavaScript. In the latter case, specific

controller methods (actions) are exposed as a JSON API local to

that particular Razor page. The two approaches are different in

execution but similar from an architecture and component
coupling perspective.

The above comparison between standalone SPA apps and Razor
apps enables us to introduce an architecture principle that applies

to both development approaches – the principle of “thin

controllers.” It states that you must keep your controllers thin and

simple, limiting their responsibility to user authorization, data

validation, sanitization, and formatting. Furthermore, any business

logic, data queries, or modification must happen within the

dedicated business layer (BLL). Thus, API or Razor controllers must
inject and call into the required business classes, returning the

computation result to the client through JSON results or rendered

Razor views.

Regardless of whether you use Razor actions or API controller
actions, your client application calls into server code and

expects the operation result.

21

C
o
p
yr

ig
h
t
©

 R
e
so

lu
te

 S
o
ft
w
a
re

Technical Considerations for ASP.NET Web Forms Modernization

The principle of thin controllers constitutes a significant
architectural benefit in your modern .NET application, enabling

app developers to quickly refactor, enhance and extend the

client application without introducing change to the domain-
specific business layer. Further, decoupling your business

functions from your presentation (client app) layer facilitates

code reuse, preventing the repetition of identical data entry and

manipulation of code we typically see in long-maintained

legacy systems.

Testing, Deployment, and Operational Considerations

Most Web Forms applications are monoliths. They started as a

single solution in Visual Studio, may have grown to multiple projects

within that solution over time, but are usually built and deployed as

a single chunk.

This creates a deployment mismatch between the legacy and the

new, with implications to consider early on. No major system is

replaced overnight.

Modern web applications are modular both on the server
(microservices) and the client (micro-frontends).

22

C
o
p
yr

ig
h
t
©

 R
e
so

lu
te

 S
o
ft
w
a
re

https://microservices.io
https://micro-frontends.org

Technical Considerations for ASP.NET Web Forms Modernization

The legacy system continues to live and receive updates and

enhancements while parts are replaced with modern equivalents.
Software teams must adopt Agile software deployment and

operation practices while using legacy monolithic deployment
procedures to minimize disruption in the software delivery to

production. Replacing parts of an existing system always bears the

risk of system regressions and disruptions for end users. Catching

bugs in production is frustrating for both developers and users and

can be expensive. To minimize risks, a precise and effective testing

strategy must accompany any software modernization effort.

Of course, the distribution of your testing efforts across various test
types depends on your business domain, system complexity, and

user journeys. You may decide to create more unit tests for a

complex domain model, such as financial analysis. Or you may

choose to write integration tests that verify the correct interaction

between different microservices in your server layer in a heavily

distributed system.

Architectures that promote heavy reliance on a REST API layer may

require more API tests. Your pie chart of test types can be different,
so long as you have more than one type of test in your solution.
Testing technologies and tools will also vary depending on your
framework of choice. For .NET-based server applications, we love

using NUnit and xUnit for unit testing, Postman and SoapUI for API
testing. For JavaScript frameworks, some of the tools we use

include Jasmine and Jest for writing test specs,

A healthy testing strategy includes a combination of unit tests

for the domain model and business services and a set of
automated end-to-end tests that verify at least the critical use

cases in the system, optimally all use cases.

23

C
o
p
yr

ig
h
t
©

 R
e
so

lu
te

 S
o
ft
w
a
re

https://nunit.org
https://xunit.net
https://www.postman.com
https://www.soapui.org
https://jasmine.github.io
https://jestjs.io

Technical Considerations for ASP.NET Web Forms Modernization

Protractor for end-to-end tests running in the browser, and Jenkins for tying

everything together in nicely-orchestrated, build, test, and deploy workflows.

Combining these practices, collectively termed Continuous Integration and

Delivery (CI/CD), reduces the cost of deployment and operation of a live system

and increases the rate of delivering new value to end-users. The principles of CI/
CD are increasingly considered an essential part of the modern software

development life cycle. They lead to a DevOps culture that builds significant
deployment and operational efficiency – a positive outcome not just for the

software development team but for the entire business. We use CI/CD from day

one of a software project. It’s a great approach that allows us to deliver value

quickly, receive feedback often and fix production issues cheaply. We also help

other engineering teams adopt CI/CD practices through training, environment
provisioning, and automated testing setup.

With the increasing adoption of highly independent, loosely

coupled components in a microservice architecture, agile

teams are increasingly adopting continuous delivery practices

like automated testing, automated environment provisioning,
source control-based build and deployment, quality gates,
deployment promotion, and zero downtime deployment in

production.

Integration
Tests

Unit Test

Build

ProductionStaging Review

Related
Code

Commit
Code

CI PIPELINE CD PIPELINE

24

Continuous Integration and Delivery

C
o
p
yr

ig
h
t
©

 R
e
so

lu
te

 S
o
ft
w
a
re

https://www.protractortest.org/#/
https://www.jenkins.io
https://www.infoworld.com/article/3271126/what-is-cicd-continuous-integration-and-continuous-delivery-explained.html
https://www.resolutesoftware.com/services/continuous-integration-and-delivery/

Technical Considerations for ASP.NET Web Forms Modernization

“

Final Words from Our CTO

Picking the right architecture for your modern .NET-based system is

a challenging task. The sheer amount of technical, business, and

user requirements to consider can be overwhelming. Add to that
potential decision fatigue when picking from a multitude of
JavaScript frameworks, application models, and architectural
patterns, and you can quickly lose the light in the proverbial tunnel
of your software modernization project.

At Resolute Software, we specialize in solving these challenges. We

help businesses pick the right choice of technology, tools, and

practices for successful modernization. We believe in “the right tool
for the right job” philosophy, assess project requirements from

different angles and help pick a feasible set of technologies for a

successful software project.

“From our experience as software people, investing the

time and effort in a carefully crafted system architecture

is worth every minute. “

Just as Brian Foote and Joseph Yoder comment in their famous 1997 paper “Big

Ball of Mud” – “If you think good architecture is expensive, try bad architecture.”

Veli Pehlivanov

Co-Founder & CTO

Resolute Software

25

C
o
p
yr

ig
h
t
©

 R
e
so

lu
te

 S
o
ft
w
a
re

https://en.wikipedia.org/wiki/Decision_fatigue
https://www.resolutesoftware.com
https://en.wikipedia.org/wiki/Anti-pattern#Software_engineering_anti-patterns
https://www.linkedin.com/in/vpehlivanov/

Need help to modernize your ASP.NET

Web Forms applications?

Modern .NET is the new step forward with .NET, the platform which

resonates with modern application development principles and

where all future Microsoft investments in .NET will converge. While

your ASP.NET Web Forms applications will remain functional if you

have the talent to support them, there are many good reasons

for you to consider migrating to the latest version. By undertaking

this step, you will achieve simpler development models, better
syntax in newer C# versions, less security risks and vulnerabilities

and a better overall application stability. It takes a certain level
of experience and resources to do such a migration smoothly

without compromising your legacy application’s uptime and

performance. At Resolute Software, we take the time to assess

your application‘s architecture, interdependencies with other
applications and databases, separation of the business logic

from the UI before proposing a plan of action.

See how we at Resolute would go about modernizing your
ASP.NET Web Forms application.

26

C
o
p
yr

ig
h
t
©

 R
e
so

lu
te

 S
o
ft
w
a
re

https://www.resolutesoftware.com/services/dot-net-modernization/

USA

MA 01701, Framingham,

945 Concord St,

+1-617 386-9697

Get in touch

Let’s talk about your

technology requirements.

sales@resolutesoftware.com

https://www.resolutesoftware.com/contact-us/
mailto:sales@resolutesoftware.com

