
Building a Mobile App

with React Native

The 360-Degree Guide to

Whitepaper

Introduction

This paper provides a 360-degree view of React Native from a

business perspective and aims to guide product owners and

engineering leads alike through the process of selection,

validation, the four-stage process of bringing a mobile app to

market, and the continuous app optimization post-launch.

If you are considering building a mobile application, it’s likely

that you have heard of React Native. Among the two most

utilized cross-platform tools for mobile app development in

2022, there’s a great deal of information written about the pros

and cons of using React Native, how easy or difficult it is to

learn the ropes, and so on.

With every popular technology, however, comes confusion and

misunderstanding as to when and how to use the technology.

And there’s not much information available on how businesses

should address the topic of React Native.

What is the process to follow once you validate that

React Native is the best match for your mobile app

development project?

Which are the specific use cases where React Native

should be considered?

02

About the Author

03

With over 14 years of software development, Georgi has been

crafting React and React Native-powered apps since 2015. He

has led large mobile teams at enterprise organizations and

software development teams at e-commerce companies. To

date, Georgi has published 12 mobile apps to the app stores, of

which five are React Native applications. He’s taken the

challenge of being an entrepreneur as the CTO and co-founder

of a SaaS startup.

React Team Lead

Resolute Software

Georgi Ignatov

Table of contents

05. Summary 30-31

Step 3: Building & deploying your mobile application 24

Step 2: Designing an Engaging Digital Experience 21

Step 1: App Definition 19

04. The 4-stage Process To Bringing Your Mobile

App To Market Using React Native Product

Definition

18-29

React Native use cases 12

Scalability 11

Security 10

Performance 10

03. Why is React Native a Good Choice For Mobile

App Development?
09-17

02. What React Native Is Not 07-08

01. A Brief History of React Native 05-06

01
A Brief History of
React Native

Facebook had been struggling with their mobile apps for years,

investing heavily in HTML instead of native apps, which led to

unstable apps and a clunky user experience. About a decade

ago, they focused on improving their mobile experience and

solving their problems with accessing native APIs quickly. By

leveraging React Native’s bridge model, developers could code

in JavaScript, which easily communicated with that bridge to

achieve native-like performance. React Native-powered mobile

apps got hassle-free access to mobile device functionality such

as the accelerometer, Bluetooth, location, and photos and

solved their performance issues and UX clunkiness.

05

20
13

20
14

20
15

Christopher Chedeau was a young engineer who joined the

Facebook Photos team in 2012. When he saw that the company

was trying to focus on a mobile-first strategy, Christopher

decided to dig deeper into that challenge. Jordan Walke had

previously figured out how to use JavaScript to create a UILabel

in iOS. Christopher teamed up with Jordan, Ashwin Bharambe,

and Lin He to mature the concept and got it working in less than

two days. At the end of those two days, they were able to

create local UI components from a JavaScript string that runs

directly on the mobile device. That solution could have been the

answer to Facebook’s mobile application problems.

A year later, they organized an internal hackathon to test the

framework in the company. At the end of the hackathon, it was

clear that the prototype could be used as a tool for mobile

development.

In 2015, after months of development, Facebook released the

first version of the React JavaScript configuration. In a tech

talk, Christopher Chedeau explained that Facebook was already

using React Native in production for its Group and Ads Manager

mobile apps.

06

https://reactjs.org/blog/2015/05/22/react-native-release-process.html

02
What React Native Is Not

React Native isn’t a panacea for all mobile app development

problems. You should only use it if it addresses your specific

needs and challenges. We’ll dig into the specific use cases in a

minute.

React Native is a hybrid app development framework but that

doesn’t mean the code you write is 100% cross-platform; the

behavior of some components varies depending on the

platform. That’s why sometimes you need to write native code

for Android/iOS. Therefore, the slogan of React Native is “Learn

once, write everywhere” and not “Write once, deliver

everywhere.”

07

Fortunately, the React Native community today is quite large,

and many libraries have been developed, so we don’t need to

reinvent the wheel. Sometimes, however, you still need to write

both native code bases and then write a common wrapper in

JavaScript to share with the native platforms.

React Native’s codebase is usually 80-90% compatible with

Android and iOS, but sometimes you still need to write platform-

specific code to make your apps look and feel the same on both

platforms. You can achieve 100% by using the correct libraries,

which we’ll introduce later in this guide.

08

03
Why Is React Native a Good
Choice for Mobile App
Development?

09





10

The performance of React Native-powered apps is less efficient

than native apps. The reason is the additional JavaScript layer

for communicating with native APIs that React Native has,

which is the case with any cross-platform development solution.

A compelling reason for using React Native over WebView-based

tools is the case where you want to achieve 60 frames per

second and offer a native app look and feel simultaneously. The

React Native team has done its best to deliver battery-saving UI

performance by default, but sometimes that’s impossible. An

additional advantage of React Native is that while end-users

enjoy a close-to-native experience, developers can share

business logic with their ReactJS- powered web app, benefiting

from faster time to market and more feature-rich development

output.

Security

If you need to build an application that requires Type A security

(the way online banking apps do), React Native becomes a

rather poor choice. In such cases, developers need to give

additional consideration to malicious pieces of code that may

reside in third-party packages.

Performance

https://www.lawinsider.com/dictionary/type-a-security

11

Scalability

The scalability of your mobile app depends not only on the

framework you use but, more importantly, on the architecture

and understanding of how things work under the hood.

By design, React Native is pretty scalable, but sometimes you

might run into limitations if you don’t understand exactly what

you’re doing. Here are a few examples:

The React Native development team constantly works to

improve the developer experience and the tools at your

disposal.

No support for parallel threading.×

Abstract layer limitations - An abstract layer was formed

above the native platform to generalize the React Native

framework’s functionalities. While executing the code, even if

a single error occurs in this abstraction layer, it might create

cascading errors and warnings in the entire application.

×

12

React Native Use Cases

When To Use React Native

E-commerce, news, and business apps

Walmart is an excellent example of a complex e-

commerce application, and let’s not forget that

Salesforce leverages React Native for their mobile

business apps.



13

A few reasons why the technology is suitable for

this type of app:

Excellent performance for e-

commerce apps as they are

usually simple. You need to

render a catalog with

products and not much else,

which does not require

expensive computations. Plus,

ReactJS can be very SEO

friendly with SSR like NextJS.

Additionally, you can share

your mobile and web business

logic between the web and

native mobile applications.

The latter is very handy for

news applications like

Bloomberg, which uses React

Native under the hood.

Shared codebase between

iOS and Android.

You can leverage real-time

push notifications with a

hosting service like Firebase.

Community-built packages for

payments that work on both

platforms.

Social networks and chat applications

Instagram, Facebook, Pinterest, Discord, and Skype

use React Native extensively.

#

14

Here’s why the technology is well-suited for social networks

and chat apps:

The activity feed components

in React Native enable the

creation of a dynamic news

feed and improve user

engagement, retention and

conversion rates for social

media apps.

With React Native, you can

create real-time chat apps

using two elements - a server-

side library and a client-side

library - that instantly connect

users with friends and

acquaintances.

Developers can use the

Firebase database to

integrate push notifications

into the app. A social media

app needs a real-time

notifications feature to enable

end-users to receive

messages and interact with

their friends’ posts.

Firebase authentication can

be used to create a login

function with different login

options.

End-users can upload photos

without hassle.

React Native-powered social

media apps enable users to

like a photo and respond to it

with an emoji. Also, single-

page apps facilitate the

actions of liking or reacting to

a post or photo. And we all

know how valuable React can

be for creating SPAs.

15

16

Games

React Native is unsuitable for real-time games that need

complex interactions. However, you can build idle clicker games

with React Native or chess. In short, simple games.

Utilities

React Native is not a good fit for apps that constantly leverage

native features and platform APIs. It’s easier to build those using

native platforms. Some examples are battery monitors,

brightness controllers, and antivirus software.

Make and receive calls

If you are building apps that need to leverage the mobile

device’s call functionality, you should not choose React Native

either unless you feel like writing a lot of native code. It is hard

to handle native calling interfaces in React Native. You can use

react-native-callkeep for that but achieving a fully native look

and feel for applications requiring calling is still a challenge. So,

if your application requires a native calling functionality, our

advice would be to write your own packages or just go straight

for native mobile development.

React Native Use Cases

When React Native Is Not
the Best Choice

https://github.com/react-native-webrtc/react-native-callkeep

17

Background processing apps

These are resource-intensive apps that feature a lot of

background processes. React Native does not handle

background tasks well, and there is no library yet to make the

process easy and smooth. There are some libraries with limited

functionality, for example:

Featuring only a periodic

worker (no support for

queue)

×

Generally, not feature-rich. ×

It only runs once every 15

minutes. There is no way to

speed this up.

×

Banking software

React Native is less suitable for banking apps unless you want

to be extremely careful with the third-party packages you

install.

In the world of npm, you can easily publish malicious source

code residing within specific packages, and with React Native,

we often rely on third-party packages. When building banking

software, you must rely on secure-source packages that are not

community-based. In theory, it’s not impossible, but you must be

very careful when installing packages within your project, or you

can choose to develop your own packages for React Native.

04
The 4-stage Process To
Bringing Your Mobile App To
Market Using React Native
Product Definition

18

This section will go through the step-by-step process of

developing and launching a successful mobile app. The team of

mobile app development experts at Resolute uses a proven

four-step method for building mobile apps with React Native.

Let’s have a look at it.

Say you have an excellent idea for a new application or service,

and all stakeholders are on board – indeed, this is the first step.

Now you’re probably thinking about how to build it and who

could help you. Great. But wait a minute, what exactly are you

building? Will your app manage to attract customers when it is

published? Does it fit your business objectives? Is there a clear

need that you will be addressing with it? These are the

questions you should ask yourself before you get everything

rolling.

19

Step 1: App Definition

Does every mobile app need to have a definition? Yes. Because

if you don’t have one, you might get there if you’re lucky, but in

most cases, you’ll either fail or drastically increase your costs.

Once you write your mobile app’s business case and discuss

your product-market fit with your stakeholders, it’s time to

define the minimum viable product. This phase is called scoping

or concept development and focuses on refining the product

strategy.

In this phase it is important to define the below details:

Business research starts with evaluating the total

addressable market (how big is the market?), then you

should focus on segmenting and targeting (building your

ideal client profile and primary buyer persona, your

app’s value proposition, positioning, GTM strategy, etc.)

Last but not least, you should define what success

means and how you measure it.

Business case


20

Validate that React Native is applicable to your use case

and can be leveraged for your product; if not, look for

alternatives or how to adapt your product vision so you

can take advantage of the React Native flexibility.

1. For example, research if there are packages in the

community for the Native APIs you want to use, and

ensure they are well-maintained.

2. Validate that it is possible to use a particular

native API through React Native. If that’s the case,

feel free to move forward.

Validating the tech stack


It’s important to determine the success metrics early to

evaluate and measure progress after launching the app.

What are the KPIs you would want to monitor closely?

These can be basic metrics like average order value or

something more specific like tailored goals that are

relevant to your business.

Success metrics


Finally, you must put together a backlog of app

specifications and requirements for your minimal viable

product in order to build a roadmap and get rough

estimates for the app’s development.

Building a backlog


21

Step 2: Designing an Engaging

Digital Experience

At this stage, your app starts to take shape. Up until now, you’ve

only imagined in it . By the end of this phase, you’ll have a good

idea of how the app will look and feel to your customers.

✑

22

At this point, a UI designer starts adding variety and substance.

For some, things start to get exciting as the application begins

to mature right before their eyes. It’s time to get creative - color

and shapes; even animations can help you create a visually

pleasing app.

Time to apply the design to your
newly built wireframe prototype

A quick tip: Invest in your app design

In the long run, the more you invest in the design

stage of your app, the more the process of bringing

the app to life becomes easier.

You may already have a few wireframes sketched, but this

stage is the perfect opportunity to look at how each screen of

your app will appear. Our advice is to use low-fidelity layouts,

keeping in mind the ideal user experience - the color variants,

images, and text will generally come later. At this stage, you

should focus on the user journeys that help customers complete

their tasks effectively and enjoyably. Using the wireframes, you

can build a clickable prototype connecting all the dots of the

UX.

Start by creating wireframes for your
mobile app screens

Here’s what an app design process usually looks like:

23

Additional Tips to Facilitate

the Development Process

1
Aim to build a clickable prototype as it helps you

visualize the customer journey and intended

interactions in the app from start to finish (this is

possible with tools like Figma, Sketch, Adobe XD, and

InVision).

Focus on documenting everything that can help the

development team deliver better quality faster.
3

Design (and development) work can be created and

reproduced quickly and at scale.

✓

Design systems free up design resources to focus on

larger, more complex problems.

✓

They create a common language within the design

team and between cross-functional teams.

✓

They create visual consistency across products,

channels, and (potentially) siloed departments.

✓

They can serve as excellent learning material for

junior developers and designers.

✓

Well-implemented design systems can provide many

benefits to the design team:
2

24

Step 3: Building and Deploying

Your Mobile Application

Now that you have a comprehensive product spec for your app

and a well-designed user experience, it’s time to start

developing the application. React Native offers many options to

get started with development, for example, Expo, a very friendly

platform for beginners in React Native development. But if you

want fast performance and control over your app, trust a

boilerplate that doesn’t use Expo because Expo is an extensive

framework built around React Native and includes a lot of

libraries that you don’t usually need. A simple “Hello World” app

built in Expo weighs about 25 MB and has only one screen.

Below, we’ll introduce you to some React Native boilerplates

and show you how you can build your app in minutes.

A very minimalistic and simple

mobile starter kit that comes

complete with all the standard

tools you need for developing your

application. Plus, it includes Native

Base for the UI components.

React Native Starter Kit



https://expo.dev
https://github.com/mcnamee/react-native-starter-kit

25

Comes with a lot of batteries

included. Based on Expo, it packs

many good practices, but if it

doesn’t fit your needs, don’t use it.

It ships with Expo, which might be

a bit heavy, but if you are building

your first React Native app, start

with Ignite.

Ignite

Just like the starter kit, it is

lightweight and comes with the

essentials only. This boilerplate will

be a good choice if you need to

start quickly. The downside is that

it doesn’t include a design system,

so you either have to build your

own or use an existing one from

the community.

React Native Boilerplate





https://github.com/infinitered/ignite
https://thecodingmachine.github.io/react-native-boilerplate/

26

Building Your Own Boilerplate

Below, we’ll introduce you to some React Native boilerplates

and show you how you can build your app in minutes.

A great UI library used by Wix in their own React Native

application. It’s quite mature.

→Wix React Native UI kit

A third-party library based on the Wix navigation library. It

provides hooks to work with the navigation of hook-based

components in React.

→React Native Navigation Hooks

A library for state management; there are alternatives like

MobX, but we prefer Redux as it’s easier to set up and

straightforward to work with.

→React Redux

A very interesting library that packs over 20,000 icons.

→React Native Vector Icons

https://wix.github.io/react-native-ui-lib/
https://underscopeio.github.io/react-native-navigation-hooks/docs/before-you-start/
https://react-redux.js.org/introduction/getting-started
https://www.npmjs.com/package/react-native-vector-icons

27

It allows you to import SVG as React components into your

code. It is helpful for icons or vector graphics that you want to

have in your app.

→React Native SVG

A debugger powered by Facebook.

→Flipper

A test runner and a testing framework for

JavaScript/TypeScript.

→Jest

Don’t confuse it with React Navigation. It provides ways to

organize the content layout on your mobile screens in a logical

and performant manner. We find this stack a lot easier to work

with. Again, it is powered by Wix, who use it in their application.

It is very flexible and easy to work with and maybe a bit hard to

set up, but Wix provide comprehensive documentation that you

can leverage.

→React Native Navigation

https://github.com/wix/react-native-navigation
https://reactnavigation.org
https://github.com/software-mansion/react-native-svg
https://fbflipper.com
https://jestjs.io/docs/tutorial-react-native

28

A promise-based HTTP client for JavaScript

React Native has a large developer community. If you need

something, before you reinvent the wheel, do thorough research

and check if the community hasn’t already developed the

feature you’re looking for.

Once you pick the technology stack, it’s time for your

development team to get their hands dirty.

→Axios

→A tutorial on how to add custom fonts in React Native

https://axios-http.com/docs/intro
https://blog.logrocket.com/adding-custom-fonts-react-native/

29

Publishing Your Mobile App

Once you are done developing your mobile app, you can send it

to Google Play Store and Apple app store for publishing. There’s

a review process that takes time, sometimes up to a week, so

you should take this into account when scheduling your app

release cycles.

At the time of writing (11/21/2022), Google Play Store ask for a

$25 one-time publishing fee, while publishing on the Apple Store

will cost you $99/year.

Congrats!
Your mobile app

has been

successfully

published on the

app stores.

https://play.google.com/store/games
https://apps.apple.com/us/app/apple-store/id375380948

30

Final words

Considering a modernization project that

demands an enterprise development approach

with modern technology in mind?

Are you developing a mobile application with a

snappy, responsive UI that works on any device?

Regardless of the task, deciding on the technology

stack, validating your choice, and adjusting the

technology to fit your custom requirements can be

challenging. More importantly, a lot of work needs

to be done before rushing into development –

building the business case, validating the tech

stack, designing your prototype, and developing

and deploying your app while continuously

enhancing its performance can be overwhelming.

31

At Resolute Software, we specialize in solving these

challenges. We have a problem-focused approach -

We are experts in UI, combining UX/UI design and

pixel-perfect app development. This way, The

Resolute team offers full-scale React development

while mitigating risks from dubious-quality

community-sourced components. Our rich skill set

guarantees a quick go to market, safeguarding your

project from expensive, time-consuming

complications.

We aim to understand your
business dynamics first and
create a solution that works
best for you.

USA

MA 01701, Framingham,

945 Concord St,

+1-617 386-9697

Get in touch

Let’s talk about your

technology requirements.

sales@resolutesoftware.com

mailto:sales@resolutesoftware.com
https://www.resolutesoftware.com/contact-us/

