
Whitepaper

Best Practices &
Considerations
When Modernizing
Progress Telerik UI
& Kendo UI Powered Apps

Table of contents

03. Conclusion 40-44

Framework-Specific Considerations 38

Testing 36

Business Logic Considerations 33

Design Considerations 28

Selecting the Right Client Technologies 25

Platform Considerations 21

Architectural Changes 11

02. Planning an Application Upgrade 10-39

Kendo UI and the Shift Toward JavaScript 09

Telerik UI and ASP.NET 04

01. A Brief History of Telerik and Kendo UI 03-09

01

Introduction

Your legacy systems are critical for your business operations.

Changing how they work often seems like a risky proposition.

But at the same time, you can’t help but notice that keeping

them running grows more time-consuming and expensive

each year. It’s time for a change.

But where do you start?

This paper will look at modernizing a Telerik UI-powered or

Kendo UI-powered applications. We’ll look at application

design, architectural issues, platform considerations, client

technologies, and the other salient issues this project entails.

02

01
Telerik UI and its JavaScript offshoot Kendo UI

grew and evolved in parallel with Microsoft .NET

web offerings.

A Brief History of
Telerik and Kendo UI

03

01011 0101

After two years of previews and betas, Microsoft released

ASP.NET as part of the newly unveiled .NET component stack in

2002. ASP.NET integrated Active Server Pages, Microsoft’s

server-side scripting language, into the .NET Common Language

Infrastructure (CLI).

Adding the .NET CLI to Active Server Pages gave web developers

access to Windows dynamically-linked libraries (DLLs) with

complete object-oriented language support, as well as

advanced features like exception handling and type safety.

Initial Release

04

Telerik UI & ASP.NET

2000 2010 20162005 20072002

.NET

Declarative access to SQL data stores

A generous assortment of new controls, including lists,

file uploads, and mulitviews

Enhanced localization features

Object-relational mapping

Advanced template support with Master Pages

Improved page loading times via pre-compilation













While the introduction of ASP.NET was a landmark for

enterprise web capabilities, the next major release was

a milestone in developer productivity.

In November 2005, ASP.NET 2.0 and Visual Studio 2005 gave

web developers a broad set of new features, including:

ASP.NET 2.0: “Project Whidbey”

05

2000 2010 20162005 20072002

.NET ASP.NET 2.0

Sitefinity’s popularity and the success of its custom controls

laid the foundation for Telerik’s UI component libraries. By 2007,

Telerik had released several versions of UI for ASP.NET, including

RadAjax, its own AJAX engine for ASP pages.

Telerik, a small vendor founded in 2002, started as a .NET

development tool company. In 2005, they expanded into

the ASP.NET space with Sitefinity, a modular content

management system (CMS). The software shipped with

custom controls, a complete API, and built-in content

management workflows.

While Microsoft was working toward ASP.NET 2.0, independent

software vendors embraced the platform with tools and

libraries that supported building enterprise web applications.

Telerik Sitefinity & the Genesis of Telerik UI

06

2000 2010 20162005 20072002

TELERIK.NET ASP.NET 2.0

In January 2007, Microsoft introduced ASP.NET AJAX. This library

integrated with ASP.NET 2.0 and made it easy for developers

familiar with the .NET paradigm to build interactive AJAX

interfaces. The client side libraries weren’t exclusive to .NET and

worked with other back-end systems.

In April of that same year, Telerik released UI for ASP.NET AJAX,

code named “Prometheus”, adding AJAX to the UI framework.

This framework replaced RadAjax, which had merely layered

AJAX interactivity over the existing .NET framework with controls

implemented with Microsoft’s new integrated support for AJAX.

ASP.NET AJAX & Telerik UI AJAX

07

2000 2010 20162005 20072002

TELERIK.NET ASP.NET 2.0 AJAX

Telerik issued the first release of UI for ASP.NET Core, with a port

of UI for ASP.NET MVC. Subsequent releases included support for

JQuery, AngularJS, and better integration with Kendo UI via

NuGet packages.

Modular packages distributed via NuGet

Cross platform support for MacOS, Linux, and Windows

Dependency injection

Support for more than one library version on the same server









In 2016, ASP.NET was transitioned to .NET Core. This re-branding

reflected a rewrite combining ASP.NET MVC and ASP.NET Web

APIs into a single model, as well as a move to open-source.

The new model introduced several important features for

improving developer productivity:

Telerik UI & .NET Core

08

2000 2010 20162005 20072002

TELERIK .NET CORE.NET ASP.NET 2.0 AJAX

Kendo UI and the Shift

Toward JavaScript

09

Kendo UI started as a set of JQuery and AngularJS

controls, with DataViz being a popular offering for

building charts for scientific and market applications.

But as web development and .NET evolved toward more

JavaScript-centric approaches, so did Telerik’s offerings.

Kendo UI grew from a set of controls to a component

library with a compelling offering: a consistent interface

for the four major application frameworks (Angular,

React, Vue, and JQuery).

0202022

10

02

Architecture

Platform

Client Technologies

Design

Business Logic

Testing

→

→

→

→

→

→

Planning an application upgrade includes a wide

variety of concerns. But like any software design,

you can avoid overwhelm and confusion by breaking

the project down into separate areas of concern:

Planning an
Application Upgrade

11

Architectural Changes

Upgrading from legacy web technologies

includes changing how clients and servers

communicate, as well as how your back-end

processes messages. Rather than re-architect

these changes as your teams code, it’s best to

look at the new technologies and plan ahead.

12

.NET support both synchronous and asynchronous request processing,

but its async model is different from Node.js.

With Synchronous Request Handling, requests are processed by a single

thread. If the request requires a blocking operation, the thread waits.

The threads come from a statically-allocated pool, so if too many

requests are blocking, the application risks starvation.

Asynchronous Pages, introduced in ASP.NET 2.0, allow a developer to

designate operations within as asynchronous. When they’re

encountered, they are completed on a new thread, and the request

thread returns to the pool. When the asynchronous operation completes,

another request thread is pulled from the pool to complete the request.

Asynchronous HTTP Handlers are a similar construct that operate with

the same threading model.

The .NET framework also has asynchronous support for HTTP modules

and services.

.NET

Request Processing Models

Node.js and .NET use different threading models to manage

client requests. These models are an important consideration

when considering a port from .NET to Node.js.

13

Node.js servers use a single event loop to dispatch requests and collect

responses via callbacks. The worker threads that process the requests

are also non-blocking.

This asynchronous model makes Node.js a highly responsive and scalable

system, but it also means that any synchronous, compute-intensive, or

time-consuming operations need to be off-loaded to an external service,

or they will cause serious performance problems.

The callback model in Node is different from .NET in that the developer

has more control—and more responsibility—over how asynchronous tasks

complete and return their results.

Node.js

Because of Microsoft’s mixed threading model, you’ll need to carefully

inspect your .NET code, identify synchronous operations, and either

redesign them to be non-blocking, or find a home for them in a decoupled

system, such as a microservice that sits behind the back-end service.

Design Considerations

14

Microservices vs. Monolithic Services

A review of the system’s overall architecture goes hand-in-hand

with a review of request processing models and, as we’ll see

below, client-server communications.

Many legacy .NET applications are designed with a monolithic

architecture. They’re built as an integrated unit that runs on a

small number of servers (often a single server or cluster) and is

built from a single codebase. This architecture has its strengths

and weaknesses, and this paper is about considerations when

modernizing an application, not advocating for one design

paradigm over another. Reviewing the architecture and

evaluating how it fits in with the new components and protocols

is a necessary step.

Breaking down the monolith is worth considering, especially if

the modernization project involves redesigning request handling

as we discussed above.

vs

MICROMONO

15

So a monolithic service that managed authentication and access to a

relational database and to market data could be broken down into three

services that sit behind a user session manager that has a basic

understanding of business logic and knows how to orchestrate

messaging between the individual services and clients.

This design establishes the same separation of concerns and flexibility as

a microservice architecture, but it represents a more incremental change

than a complete migration to microservices.

SERVICES

BUSINESS LOGIC

BUSINESS ENTITIES

The obvious alternative to a monolithic architecture is one based around

microservices, but it’s not the only one, and it might not be the best.

Another option is the microlith.

A microlith decomposes the web service into multiple services, but it

maintains a single connection to clients.

Monoliths

16

This loose coupling has many advantages, such as making it easier to

design, code, test, and deploy changes into one part of the system

without affecting others. But microservices can introduce complexity and

even chaos into a system if there is no coordination between them.

It makes sense to look at how you’ll structure communications between

clients and servers before selecting an architecture.

SERVICES

BUSINESS LOGIC

BUSINESS ENTITIES

Microservices go a step further. You break the monolith down into

discrete services, and the client application communicates with each

one. Each service has its own message formats, business logic, and

codebase.

Microservices

17

Client Protocols

Microservices, RESTful APIs, and GraphQL are often associated

with each other. But even if you don’t opt to shift to a

microservice architecture, you need to modernize your client

protocols to optimize and take advantage of the latest

application tools. If nothing else, moving away from SOAP’s XML

to JSON will save your application bandwidth and processing

power.

But these REST and GraphQL represent more than just a way to

format requests and responses between parties. They define

query types and message semantics and manage the state of

clients.

RESTful APIs have become the common dialect for many internet

services. So much so that REST’s wide adoption has become one of its

primary strengths, if you build applications and tools that can speak

REST, it’s easier to integrate third-party services and libraries. It’s also

easier to export an API to clients and partners.

RESTful APIs

18

Decoupling is an important concept in RESTful APIs, and where it often

differs from legacy applications. Clients call the API and receive a result

that reflects the current state of a URI. That cannot make any

assumptions about “who” they are speaking to. This separation makes it

possible to layer a RESTful API over a legacy system.

Decoupling: Servers and clients are independent of each other.

Servers expose Uniform Resource Identifiers (URIs) that define how

data is requested and received.

Stateless: REST is short for Representational State Transfer.

Requests and responses are discrete events.

Consistent Interface: There should be one and only one URI for a

piece of information in an API, and the API request for a resource

type should always look the same

→

→

→

REST has a few important design principles:

GraphQL is a declarative query language that allows a client to

formulate ad hoc requests from multiple services. The client can populate

the queries with just the fields they need and omit the ones they don’t.

This simplifies data retrieval for the client, since they only need to speak

with a single server, and they don’t need to filter unnecessary

information.

GraphQL avoids coupling between client and server with schemas that

define what resources look like. The schemas make it possible for clients

to see how resources are formed and generate queries for them.

GraphQL

19

Which protocol is best depends on the data your application works with,

and complete comparison of REST and graphQL is beyond the scope of

this paper. But we can look at a quick example.

Imagine an application for managing music that has a page for

displaying and editing albums. The page is a table with no artwork; it’s

only designed to update information about the tracks and artists.

Which One?

An album has a title, a release date, a list of tracks, a list

of images, and a list of artists

Each track has a list of artists

Each artist has a name





A RESTFUL APPLICATION WOULD: A GRAPHQL APPLICATION WOULD:

Request the albums

Discard or ignore the dates

and image URIs

Build a list of artists

Request the artists

Collate the albums, tracks,

and artists into the table

→

→

→

→

→ Get the data schema

Build a query for the albums

that specifies it wants artists,

tracks, and artists for each

track, but omit the rest of the

album data

Use the results to build the

table

→

→

→

20

On the surface, GraphQL looks more efficient, especially if you’re

designing or implementing the client. It makes a single request and

displays the results. But the work of collating the data didn’t go away—it

was pushed onto the server. Depending on your application’s needs, this

may or may not be the best approach.

This example brings up another question. What’s more important,

network bandwidth or processing power? For REST, the client made two

requests and then merged the lists while discarding some extra fields.

GraphQL made a single request. How big was GraphQL’s response? How

many duplicated artist names did it contain? REST doesn’t have a built-in

mechanism for filtering unwanted fields. GraphQL doesn’t have any built-

in mechanism for compressing duplicate data.

Rest GraphQL

CLIENT CLIENT

A SINGLE QUERY RETRIEVES

MULTIPLE RESOURCES

RETRIEVING MULTIPLE RESOURCES

REQUIRES MULTIPLE QUERIES

21

Platform Considerations

Modernizing an application is an opportunity to

examine every aspect of how, where, and why it

works. There are benefits to staying with your

current platform, but there may be reasons to

move to a new one, too.

22

Licensing Costs: Windows always comes with a licensing

fee, while you can run Linux for “free,” or with a support

contract from one of the major vendors.

Support Staff: if you switch from one operating system to

another, you’ll need to train, augment, or replace your

current support staff.

Infrastructure Support: Node.js and .NET are cross

platform, but what about the rest of your infrastructure?

Will you need to support multiple operating systems?

Cloud vs. On-Premises: Will you run the application in the

cloud? Have you chosen a provider? Which operating

system do they support best, and what are the costs?









Linux vs. Windows

Node.js and .NET are cross-platform technologies. Most

companies opt for either Windows or Linux, with Linux being a

more common choice for Node.js.

When evaluating the two operating systems, consider the

following:

23

Cloud vs. On-Premises

Many companies elect to move to the cloud because they

expect to save on costs, and many are disappointed when that

doesn’t turn out to be the case.

Cloud computing involves considerably lower capital expenditure

(CAPEX) than on-premises, but it comes with higher monthly costs.

You may be able to control those costs by strategically scaling your

resources up and down based on demand, but only if your application

supports this strategy.

Costs

Cloud security is often cited as a risk. When you extend or move your

applications to a cloud provider, you are essentially dependent on their

security measures. But are your security practices better than theirs?

You may be improving your security with a move to the cloud.

Security

Eliminating or reducing your on-premises hardware means you need less

hardware support staff. But maintaining cloud infrastructure requires a

new skill set in high demand.

Staffing

24

Moving to the cloud can mean many things.

Here are a few common options:

Cloud Options

Serverless: A serverless application isn’t tied to a system. It

runs on demand and then exits. These applications have

significant limitations with regard to how long they run and

how they manage state, but they can be very cost-efficient

for some applications.

4

Cloud Instances: A cloud instance is a virtual system similar to

a VPS but better isolated from other clients. You can use them

for long-lived purposes, like a dedicated server, or scale them

up and down based on demands. Cloud instances are

generally based on the active time rather than billed monthly

like a dedicated server or VPS.

3

Virtual Private Servers (VPS): A virtual machine running on a

shared server. In this scenario, you share a host with one or

more clients. The system’s hypervisor limits the resources your

VPS can access, and you’re not protected from a misbehaving

application running on the same shared host.

2

Dedicated Servers: A dedicated cloud server is “someone

else’s computer.” You’re renting a dedicated resource located

in a cloud data center, and your application has exclusive

access to the system’s memory, CPU, and disk.

1

25

Selecting the

Right Client Technologies

Which front-end libraries and toolkits

are best suited for your project? Several

options exist even if you decide to stay

with Microsoft and Telerik.

26

How will you approach modernizing your client applications?

Will you take an incremental approach, or start from scratch?

This is just as much of a business decision as it is a

technological one. Developers are usually ready to start over

and fix the mistakes of the past. But how long will it take to

reproduce all the existing functionality? What happens to bug

fixes and new feature requests on the legacy platform in the

meantime? These are age-old issues, and the solutions depend

on individual circumstances.

An incremental approach skirts many, but not all, of those

issues. It’s easier to carve out a portion of an app for a code

freeze while building the replacement, and it makes it easier to

demonstrate steady progress to management. But incremental

change means a prolonged period where you need to support

two or more different architectures.

Incremental Change?

Or Rewrite From the Ground Up?

27

Selecting the Right Frameworks and Tools

Cloud computing involves

considerably lower capital

expenditure (CAPEX) than on-

premises, but it comes with

higher monthly costs. You

may be able to control those

costs by strategically scaling

your resources up and down

based on demand, but only if

your application supports this

strategy.

ASP.NET MVC

Razor Pages uses the Model,

View, ViewModel design

pattern for pages. It’s a

popular model for mobile

applications and JavaScript

libraries like Knockout.js. This

programming model often

leads to simpler code that is

easier to understand and

test. Razor is an excellent

candidate for an incremental

migration of a legacy ASP.NET

application.

Razor Pages

Blazor is a single page app

framework that uses C#

instead of JavaScript. If your

developers are familiar with

C# and see advantages to

working with the same

language in the client as the

back end, Blazor is an

attractive option.

Blazor

Finally, there is the option to

move away from .NET

technologies on the client

side. Angular, React, and Vue

enjoy wide community

support, a variety of

components, and support

from third-parties like

Progress Telerik.

Angular, React and VueJS

28

Design Considerations

Modernizing an application can be a

daunting task, and the design plays a

critical role in ensuring its success.

29

Regardless of whether you opt for an incremental upgrade or a

complete rewrite, you need to document how your application

works and identify the features and behaviours you’ll retain in

the next version.

Some features will be required because of legal or contractual

obligations, others will be required because clients expect

them, while some features may be obsolete or unused.

Gathering this information may be the most difficult and

gruelling step in the upgrade process, but if you get it right, then

you’ll have a clear and correct road map for the project. If you

don’t, you’ll be setting your team up for unpleasant surprises.

Documenting and Preserving Existing Functionality

Existing Documentation: Existant documentation, even if out of date,

is an insight into how and why the application was created.

Test Plans and Results: Tests tell you which behavior is important or

was frequently problematic.

→

→

There are several primary sources for the documentation you need to

plan an application modernization.

Sources for Documentation

30

Financial considerations like Sarbanes-Oxley (SOX)

Privacy laws such as GDPR, COPPA, CCPA, CPRA, and HIPPA

Local regulations, including sales taxes

1.

2.

3.

It’s hard to come up with an example of an application that doesn’t have

to conform to legal or regulatory requirements.

Legal and Regulatory Requirements

Beyond regulations are the business-related features required to run the

application. These include managing users, billing, inventory

management, and accounting. The personnel involved with running the

application now have needs and expectations that the new version will

need to meet.

Business Requirements

Finally, there are the features that sell the product. What’s important to

your users? What, if it was missing or changed, would make them leave

for a competitor? What would they like to see improved?

User Requirements

This is far from an exhaustive list, but it will help start the process of

documenting what the modernization will need to cover.

Run Books: The requirements to support the application in

production are valuable data points.

Defect and Trouble Reports: These reports tell you how the

application was modified after the initial release.

→

→

Infrastructure: Requirements involving infrastructure

upgrades or moves, such as new database technologies,

shifts to the cloud, etc. should be part of the

modernization project.

Legal and Compliance: Unless the deadlines are far into

the future, delaying legal requirements is probably a

mistake.

User Features: User features require careful consideration.

Do they eliminate entire pages? Do they require new

controls? Adding them may require changing the

migration plan.

1.

2.

3.

Are new requirements attached to this modernization? There’s

an argument for pushing them back until after the

modernization is completed, since they could be a distraction.

But there’s also a chance that ignoring new requirements will

lead to implementing old features that are destined for

significant changes or removal.

There’s a balancing act involved with considering new features.

Which should be implemented right away, and which should

wait?

There are a few guidelines you can consider as you review them:

Considering New Requirements

31

32

An enhancement differs from a new requirement in that it’s an

opportunity to change the application as a result of the

modernization.

Some enhancements are user focused, such as responsive

design or proper mobile support. Others benefit engineering,

such as a shift from a page-based to a component-based

design, or easier deployments via CI/CD or improved packaging.

In all cases, these enhancements are part of the project and

need to be documented as part of the design.

Potential for Enhancement

33

Business Logic Considerations

With new technologies and an altered, if not

entirely new, design comes the question of how to

transpose your business logic from the legacy

system to the new one. Regardless of where you

place your business rules in the new design, there

will be differences between the new and old tools.

Many legacy applications perform all input validation up to

the server in order to avoid users bypassing the front-end

business rules by disabling JavaScript. There is still a

compelling argument for performing validation on the back

end, but the new technologies have differing implementation

details to consider.

You can perform syntactic validation in the front end

effectively while still leaving critical business logic in the

back end, close to your model code. Kendo UI works with

JQuery’s validation library, so you can use that to perform

checks on field contents before forwarding them to the

server for semantic checks. Telerik UI has similar support for

Blazor’s page validation and ASP.NET’s Core form validation.

Input Validation

34

k-i-john.doe@gmail.com

Email



k-i-+1-222-555

Phone number



Confirm

With a modernization that will likely involve breaking a

monolith into two or more parts, business logic on the server

side will change. Each back-end server or service will need to

perform its own integrity checks and implement its own

domain logic.

For example, multiple microservices can participate in a single

transaction. Each will validate their part of the exchange and

can veto the process. This means your business rules must be

atomic and idempotent. Any service can veto a process, but

they won’t get another chance if they elect to approve it.

Back End Business Logic

35

36

Testing

Modernizing an application provides an opportunity

to modernize and improve testing coverage. This is

especially important if you plan to take advantage

of continuous integration and delivery.

Unit tests also serve as a stake in the ground

regarding functionality before, during, and after

modernization. If your legacy code lacks adequate

coverage, it’s often worth addressing that as part

of the modernization effort.

37

Unit Testing Frameworks

Node.js has a rich and varied

testing ecosystem with over a

dozen popular unit testing

frameworks. Each supports

automated testing; most are useful

for front-end and back-end tests.

Unit test frameworks tend to be

opinionated, so if you’ve never used

a JavaScript framework before, it’s

worth looking into a few options

before settling on one. According

to a 2020 survey by Testim, Jest

and Mocha were among the most

popular frameworks for JavaScript.

Node.js

Telerik offers the JustMock testing

framework. This unit testing tool

supports C# and VB and goes a

long way toward providing all you

need to develop tests for a legacy

front end. Moq is an open-source

alternative that offers similar

functionality, but it’s less

comprehensive. Telerik also offers

Test Studio, which can test .NET

4.5+, Telerik UI, and Kendo UI

applications.

You can test Kendo UI applications

with JavaScript tools, including the

tools associated with the

corresponding JavaScript

framework. For example, you can

test KendoReact with Enzyme and

Kendo UI for Angular with Karma.

Telerik and Kendo UI

38

Framework-Specific

Considerations

In the case of Telerik and Kendo UI-based

applications, specific considerations can

make or break your development experience,

and you should have them in mind.

For Kendo UI components, it’s best to focus on visual

customizations via Cascading Style Sheets (CSS). These

customizations run efficiently in the browser, allowing Kendo’s

worker thread to focus on processing messages. This approach

also ensures that there’s only one type of each Kendo UI

component, remaining reusable everywhere. Only CSS classes

and IDs need to change based on specific uses, and even they

can be reused when possible to save on CSS file sizes.

Kendo UI-Based Applications

When you augment a Telerik component, you can choose one of

two approaches.

You can extend it by wrapping it with another higher-order,

domain-specific component. This approach leads to effective

code reuse but is more involved than the alternative. If you don’t

take the time and effort to find or design a suitable component

architecture and don’t set up an effective way to share the

code, you won’t realize these benefits.

The other option is to patch the component with code-level

hooks, such as event handlers, method overrides, and

templates. This is faster and produces a component that’s

tailored to your specific application scenario. But it limits the

reusability of the component. You may not be able to plug it in

elsewhere in your application.

Telerik UI-Based Applications

39

We’ve covered the business and the technical

issues you need to consider when planning to

update a Telerik UI-powered or Kendo UI-

powered application. These projects cover a lot

of ground and involve more than dropping in

new libraries and wiring together new screens.

They involve new architecture, updated

infrastructure, and invariably overlap into

business concerns.

But with proper planning and the aid of

experienced hands, you can reap the benefits of

a modern application that’s more reliable and

resilient to outages and security threats.

Conclusion

40

03033 0303

Resolute Software builds responsive, interactive web,

desktop, and mobile apps powered by Telerik UI and

Dev Tools. We offer comprehensive consulting and

software engineering services that are agile,

continuous, and delivered on a predictable schedule.

We have years of experience developing and

modernizing Telerik and Kendo UI-powered applications.

We’ve modernized legacy .NET applications that run

Telerik technologies. We’ve moved to new platform

applications (e.g., from desktop to web or web to

mobile) while preserving their UI capabilities with

Telerik components or extending them to add new

features when needed.

We can help you choose the technology stack for your

next .NET application. We know how to assess your

needs and can help you choose between ASP.NET MVC,

Razor, Blazor, or JavaScript.

About Resolute

41

The team at Resolute Software has spent years raising

the foundations of the development solutions at Telerik,

from UI components for ASP.NET AJAX and WPF to the

award-winning Kendo UI suite. As a Progress partner, our

connection with Telerik remains solid. We get excellent

insight into product roadmaps and the ability to provide

customer feedback and influence product development.

— Veli Pehlivanov

Co-founder and CTO

Resolute Software

42

We also know how and why to construct your .NET

server architecture using different paradigms—

microservices, monolith, or microlith. Additionally,

we design and implement API protocols for client-

server communication, taking the data-binding

capabilities of the Telerik components into account. 

We’ve helped customers migrate from legacy

jQuery-based applications to modern JavaScript

frameworks like Angular, React, and Vue while

preserving the existing UI functionality and adding

new features like responsive design, mobile

application look-and-feel, and modern browser

capabilities such as caching and data encryption.

We also know how to modernize legacy applications

and bring them into the new technological age,

transforming them into snappy, responsive web and

mobile apps that are always connected, and that

work from anywhere, on any device.

43

USA

MA 01701, Framingham,

945 Concord St,

+1-617 386-9697

Get in touch

Let’s talk about your

technology requirements.

sales@resolutesoftware.com

mailto:sales@resolutesoftware.com
https://www.resolutesoftware.com/contact-us/

