
React Native is an excellent framework for creating cross-

platform mobile applications. It enables you to produce a top-

notch, native-like application experience supported by a single

codebase across multiple platforms.

The underlying architecture in React Native consists of a UI main

thread where all the animations and transitions happen and a

JavaScript thread to run the business logic and process touch

events. When the app has performance issues, the thread may

become unresponsive, which results in a jittery and clunky UI

experience. Although React Native has been built with

performance in mind, there are still cases where you might fall

into newbie traps when developing React Native applications.

This is why we compiled some tips on optimizing your React

Native app performance.

8 Hands-on Tips on How To
Continuously Optimize Your
Published Mobile App

React Tips

01

Developers often use console.log for debugging

purposes, which can unnecessarily overload the

JavaScript thread; hence you should remove it from the

production application. There’s an easy way to remove

all console logs from your application’s release bundle

by installing the babel plugin:

Execute:

Remove console statements before

releasing the app

02

#1

And now all your console statements are removed from

the release bundle.

npm I babel-plugin-transform-remove-console —

save-dev

Then modify your .babelrc file under your project root

directory:

{

 “env”: {

 “production”: {

 “plugins”: [“transform-remove-console”]

 }

 }

}

03

Sometimes, you want to display a large number of items

in a grid or list-like view. In such cases, you often need to

use ScrollView. If you use ScrollView for a small number

of items, that’s fine, but as the number of items rendered

increases, performance degrades because all items are

rendered in advance.

If your FlatList is still rendering slowly, you can go a step

further and implement the getItemLayout to optimize

the rendering speed of the FlatList by skipping the

measurement of the rendered items.

Use FlatList to render large arrays of items
#2

React Native provides a unique API for delightful UI

animations that look alive to the end user; however, this

also has its downsides. The JavaScript thread runs

animations by the frame (aiming to run at 60 frames per

second), so a complex animation can begin to drop the

frames whenever the JavaScript thread is busy with

heavy computations, resulting in an unresponsive and

heavy UI. To avoid this, you can send the animations to

the UI thread by setting useNativeDriver to true on all

the animated components.

Use nativeDriver with Animated API
#3

The React Native Image component provides an out-of-

the-box option to store images in a local cache, to avoid

subsequent requests to the network to fetch the

images.

The React Native Image component uses a prop called

cache to allow caching of images. Here is an example:

Cache your app images using local storage

04

#4

<Image

 source={{

 uri: ‘https://reactjs.org/logo-og.png’,

 cache: ‘only-if-cached’,

 }}

 style={{ width: 400, height: 400 }}

/>

Anonymous functions are used a lot in JavaScript, but in

React Native, they can cause various performance

issues due to how JSX works.

Avoid anonymous functions

05

#5

The code above will recreate the function passed to

onPress on each re-render, which causes severe

performance degradation.

To avoid this, use named functions:

This way, the handle for onPress is only created once.

<TouchableOpacity

 onPress={() => increment(count + 1)}

 title=“Click me!”

/>

const

handlePress = () => setCount(count + 1)

<TouchableOpacity

 onPress={handlePress}

 title=“Click me!”

/>

In version 16.6, React Native introduced a new concept

called memoization. Under the hood, the memoization

process allows a component that has no change in

props to not re-render.

To apply memoization to your components, use

React.memo HOC:

Use React.memo() to avoid unnecessary

re-renders

06

#6

The application bar will only re-render if the props that

are passed to the component change. This concept

saves a lot on useless re-renders. Combine React.memo

with Redux to avoid local state in your components; all

your components can be memoized, significantly

improving your app’s performance.

export default React.memo(AppBar);

useMemo works similarly to React.memo, but it’s a hook

that you can directly apply to functions in your

components, commonly leveraged for heavy

computational tasks. useMemo will cache the function

result and only recalculate it if one of their

dependencies changes.

Use useMemo and useCallback hooks to avoid

unnecessary re-renders

07

#7

In the above example, the handlePress will only change

if the count changes. When the count does not change

and your component is re-rendered, it won’t affect the

handlePress. Instead, it will load it from the cache.

useCallback hook works very similarly to the useMemo

hook; the only difference is that the useMemo returns

the memoized value, while useCallback returns

memoized callback.

const

handlePress = useMemo(() => setCount

(count + 1), [count]);

<TouchableOpacity

 onPress={handlePress}

 title=“Click me!”

/>

A React Native app may occasionally need to access a

native platform API that is not by default available in

JavaScript, such as the native APIs for using Apple Pay

or Google Pay. You can develop high-performance, multi-

threaded code for image processing or reuse some

existing Objective-C, Swift, Java, or C++ libraries without

reimplementing them in JavaScript.

The Native Module system lets JavaScript run any native

code from within your JavaScript code by exposing

instances of Java/Objective-C/C++/Kotlin/Swift (native)

classes as JavaScript objects. Although we don’t

anticipate this functionality to be included in the

standard development process, its existence is crucial.

In the absence of a native API that your JavaScript code

can use, you would typically write your own custom

native module.

React Native provide on their website thorough

information on how to get started with Native Modules.

You can easily get acquainted with setting up and

developing the Native module.

In this scenario, you need Android and iOS development

expertise because you will have to build libraries in Swift

and Kotlin.

Rewrite performance-critical parts or heavy

computational operations into native libraries

and wrap them in a Native Module

08

#8

https://reactnative.dev/docs/native-modules-intro

USA

MA 01701, Framingham,

945 Concord St,

+1-617 386-9697

Get in touch

Let’s talk about your

technology requirements.

sales@resolutesoftware.com

mailto:sales@resolutesoftware.com
https://www.resolutesoftware.com/contact-us/

